English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Medicago truncatula root nodule proteome analysis reveals differential plant and bacteroid responses to drought stress

MPS-Authors
/persons/resource/persons97478

Wienkoop,  S.
Integrative Proteomics and Metabolomics, Department Stitt, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97471

Weckwerth,  W.
Integrative Proteomics and Metabolomics, Department Stitt, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Larrainzar, E., Wienkoop, S., Weckwerth, W., Ladrera, R., Arrese-Igor, C., & Gonzalez, E. M. (2007). Medicago truncatula root nodule proteome analysis reveals differential plant and bacteroid responses to drought stress. Plant Physiology, 144(3), 1495-1507. doi:10.1104/pp.107.101618.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0014-28E3-D
Abstract
Drought is one of the environmental factors most affecting crop production. Under drought, symbiotic nitrogen fixation is one of the physiological processes to first show stress responses in nodulated legumes. This inhibition process involves a number of factors whose interactions are not yet understood. This work aims to further understand changes occurring in nodules under drought stress from a proteomic perspective. Drought was imposed on Medicago truncatula 'Jemalong A17' plants grown in symbiosis with Sinorhizobium meliloti strain 2011. Changes at the protein level were analyzed using a nongel approach based on liquid chromatography coupled to tandem mass spectrometry. Due to the complexity of nodule tissue, the separation of plant and bacteroid fractions in M. truncatula root nodules was first checked with the aim of minimizing cross contamination between the fractions. Second, the protein plant fraction of M. truncatula nodules was profiled, leading to the identification of 377 plant proteins, the largest description of the plant nodule proteome so far. Third, both symbiotic partners were independently analyzed for quantitative differences at the protein level during drought stress. Multivariate data mining allowed for the classification of proteins sets that were involved in drought stress responses. The isolation of the nodule plant and bacteroid protein fractions enabled the independent analysis of the response of both counterparts, gaining further understanding of how each symbiotic member is distinctly affected at the protein level under a water-deficit situation.