de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Consistency analysis of metabolic correlation networks

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons97471

Weckwerth,  W.
Integrative Proteomics and Metabolomics, Department Stitt, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

Muller-Linow-2007-Consistency analysis.pdf
(beliebiger Volltext), 1009KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mueller-Linow, M., Weckwerth, W., & Huett, M. T. (2007). Consistency analysis of metabolic correlation networks. BMC Systems Biology, 1, 44. doi:10.1186/1752-0509-1-44.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-28BD-5
Zusammenfassung
Background: Metabolic correlation networks are derived from the covariance of metabolites in replicates of metabolomics experiments. They constitute an interesting intermediate between topology (i.e. the system's architecture defined by the set of reactions between metabolites) and dynamics (i.e. the metabolic concentrations observed as fluctuations around steady-state values in the metabolic network). Results: Here we analyze, how such a correlation network changes over time, and compare the relative positions of metabolites in the correlation networks with those in established metabolic networks derived from genome databases. We find that network similarity indeed decreases with an increasing time difference between these networks during a day/night course and, counter intuitively, that proximity of metabolites in the correlation network is no indicator of proximity of the metabolites in the metabolic network. Conclusion: The organizing principles of correlation networks are distinct from those of metabolic reaction maps. Time courses of correlation networks may in the future prove an important data source for understanding these organizing principles.