de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Profiling diurnal changes in metabolite and transcript levels in potato leaves

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons97454

Urbanczyk-Wochniak,  E.
Central Metabolism, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons97147

Fernie,  A. R.
Central Metabolism, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Urbanczyk-Wochniak, E., Baxter, C., Sweetlove, L. J., & Fernie, A. R. (2007). Profiling diurnal changes in metabolite and transcript levels in potato leaves. In 3rd International Congress on Plant Metabolomics (pp. 183-192).


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-283B-7
Zusammenfassung
The availability of sequence data is contributing immensely to the development of gene-expression resources, in parallel to these advances, several methods have been established for systematic analysis of metabolite composition. In this chapter, we illustrate the utility of parallel transcript and metabolic profiling analysis to study metabolic regulation during the day/night cycle. Recently we presented a gas chromatography-mass spectrometry-based metabolic profiling protocol, alongside spectrophotometric techniques, to follow changes in a broad range of potato leaf metabolites throughout the day/night cycle (Urbanczyk-Wochniak et al., 2005). In tandem, we profiled transcript levels using both a custom array containing approximately 2,500 cDNA clones representing predominantly transcripts involved in plant metabolism, and commercially available arrays containing approximately 12,000 cDNA clones that gave coverage of transcript levels over a broader functional range. The levels of many metabolites and transcripts varied during the day/night cycle. Whilst a large number of the differences might be expected based on earlier data, several novel changes were seen. Here we present novel description of changes in metabolites and genes associated with secondary metabolism. Profiling of diurnal patterns of metabolite and transcript abundance in potato leaves suggests that specific sets of metabolic pathway are strongly transcriptionally regulated, but revealed that the majority of the metabolic network is primarily under post-transcriptional control.