de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Decreased Expression of Cytosolic Pyruvate Kinase in Potato Tubers Leads to a Decline in Pyruvate Resulting in an in Vivo Repression of the Alternative Oxidase

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons97326

Oliver,  S. N.
Storage Carbohydrate Metabolism, Department Stitt, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons97287

Lunn,  J. E.
System Regulation, Department Stitt, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons97454

Urbanczyk-Wochniak,  E.
Central Metabolism, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons97289

Lytovchenko,  A.
Central Metabolism, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons97457

van Dongen,  J. T.
Energy Metabolism, Department Bock, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons97147

Fernie,  A. R.
Central Metabolism, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons97163

Geigenberger,  P.
Storage Carbohydrate Metabolism, Department Stitt, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Oliver, S. N., Lunn, J. E., Urbanczyk-Wochniak, E., Lytovchenko, A., van Dongen, J. T., Faix, B., et al. (2008). Decreased Expression of Cytosolic Pyruvate Kinase in Potato Tubers Leads to a Decline in Pyruvate Resulting in an in Vivo Repression of the Alternative Oxidase. Plant Physiology, 148(3), 1640-1654. doi:10.1104/pp.108.126516.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0014-26E1-5
Abstract
The aim of this work was to investigate the effect of decreased cytosolic pyruvate kinase (PKc) on potato (Solanum tuberosum) tuber metabolism. Transgenic potato plants with strongly reduced levels of PKc were generated by RNA interference gene silencing under the control of a tuber-specific promoter. Metabolite profiling showed that decreased PKc activity led to a decrease in the levels of pyruvate and some other organic acids involved in the tricarboxylic acid cycle. Flux analysis showed that this was accompanied by changes in carbon partitioning, with carbon flux being diverted from glycolysis toward starch synthesis. However, this metabolic shift was relatively small and hence did not result in enhanced starch levels in the tubers. Although total respiration rates and the ATP to ADP ratio were largely unchanged, transgenic tubers showed a strong decrease in the levels of alternative oxidase (AOX) protein and a corresponding decrease in the capacity of the alternative pathway of respiration. External feeding of pyruvate to tuber tissue or isolated mitochondria resulted in activation of the AOX pathway, both in the wild type and the PKc transgenic lines, providing direct evidence for the regulation of AOX by changes in pyruvate levels. Overall, these results provide evidence for a crucial role of PKc in the regulation of pyruvate levels as well as the level of the AOX in heterotrophic plant tissue, and furthermore reveal that these parameters are interlinked in vivo.