de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons97488

Zanor,  M. I.
Central Metabolism, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons97147

Fernie,  A. R.
Central Metabolism, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Zanor, M. I., Rambla, J. L., Chaib, J., Steppa, A., Medina, A., Granell, A., et al. (2009). Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. Journal of Experimental Botany, 60(7), 2139-2154. doi:10.1093/jxb/erp086.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0014-2494-1
Abstract
Numerous studies have revealed the extent of genetic and phenotypic variation between both species and cultivars of tomato. Using a series of tomato lines resulting from crosses between a cherry tomato and three independent large fruit cultivar (Levovil, VilB, and VilD), extensive profiling of both central primary metabolism and volatile organic components of the fruit was performed. In this study, it was possible to define a number of quantitative trait loci (QTLs) which determined the levels of primary metabolites and/or volatile organic components and to evaluate their co-location with previously defined organoleptic QTLs. Correlation analyses between either the primary metabolites or the volatile organic compounds and organoleptic properties revealed a number of interesting associations, including pharmaceutical aroma-guaiacol and sourness-alanine, across the data set. Considerable correlation within the levels of primary metabolites or volatile organic compounds, respectively, were also observed. However, there was relatively little association between the levels of primary metabolites and volatile organic compounds, implying that they are not tightly linked to one another. A notable exception to this was the strong association between the levels of sucrose and those of a number of volatile organic compounds. The combined data presented here are thus discussed both with respect to those obtained recently from wide interspecific crosses of tomato and within the framework of current understanding of the chemical basis of fruit taste.