de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Algorithm-driven Artifacts in median polish summarization of Microarray data

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons97169

Giorgi,  F. M.
Integrative Carbon Biology, Department Stitt, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons97079

Bolger,  A. M.
Integrative Carbon Biology, Department Stitt, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons97281

Lohse,  M.
Integrative Carbon Biology, Department Stitt, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons97455

Usadel,  B.
Integrative Carbon Biology, Department Stitt, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

Giorgi-2010-Algorithm-driven Art.pdf
(beliebiger Volltext), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Giorgi, F. M., Bolger, A. M., Lohse, M., & Usadel, B. (2010). Algorithm-driven Artifacts in median polish summarization of Microarray data. BMC Bioinformatics, 11, 553. doi:10.1186/1471-2105-11-553.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-240F-2
Zusammenfassung
Background: High-throughput measurement of transcript intensities using Affymetrix type oligonucleotide microarrays has produced a massive quantity of data during the last decade. Different preprocessing techniques exist to convert the raw signal intensities measured by these chips into gene expression estimates. Although these techniques have been widely benchmarked in the context of differential gene expression analysis, there are only few examples where their performance has been assessed in respect to coexpression-based studies such as sample classification. Results: In the present paper we benchmark the three most used normalization procedures (MAS5, RMA and GCRMA) in the context of inter-array correlation analysis, confirming and extending the finding that RMA and GCRMA consistently overestimate sample similarity upon normalization. We determine that median polish summarization is responsible for generating a large proportion of these over-similarity artifacts. Furthermore, we show that most affected probesets show also internal signal disagreement, and tend to be composed by individual probes hitting different gene transcripts. We finally provide a correction to the RMA/GCRMA summarization procedure that massively reduces inter-array correlation artifacts, without affecting the detection of differentially expressed genes. Conclusions: We propose tRMA as a modification of RMA to normalize microarray experiments for correlation-based analysis.