English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Enzyme Activity Profiles during Fruit Development in Tomato Cultivars and Solanum pennellii

MPS-Authors
/persons/resource/persons97426

Steinhauser,  M.-C.
System Regulation, Department Stitt, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97425

Steinhauser,  D.
Systems Metabolomics, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;
Small Molecules, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97236

Koehl,  K. I.
Plant Cultivation and Transformation, Infrastructure Groups and Service Units, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97099

Carrari,  F.
Central Metabolism, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97167

Gibon,  Y.
System Regulation, Department Stitt, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97147

Fernie,  A. R.
Central Metabolism, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97427

Stitt,  M.
System Regulation, Department Stitt, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Steinhauser, M.-C., Steinhauser, D., Koehl, K. I., Carrari, F., Gibon, Y., Fernie, A. R., et al. (2010). Enzyme Activity Profiles during Fruit Development in Tomato Cultivars and Solanum pennellii. Plant Physiology, 153(1), 80-98. doi:10.1104/pp.110.154336.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0014-2308-5
Abstract
Enzymes interact to generate metabolic networks. The activities of more than 22 enzymes from central metabolism were profiled during the development of fruit of the modern tomato cultivar Solanum lycopersicum 'M82' and its wild relative Solanum pennellii (LA0716). In S. pennellii, the mature fruit remains green and contains lower sugar and higher organic acid levels. These genotypes are the parents of a widely used near introgression line population. Enzymes were also profiled in a second cultivar, S. lycopersicum 'Moneymaker', for which data sets for the developmental changes of metabolites and transcripts are available. Whereas most enzyme activities declined during fruit development in the modern S. lycopersicum cultivars, they remained high or even increased in S. pennellii, especially enzymes required for organic acid synthesis. The enzyme profiles were sufficiently characteristic to allow stages of development and cultivars and the wild species to be distinguished by principal component analysis and clustering. Many enzymes showed coordinated changes during fruit development of a given genotype. Comparison of the correlation matrices revealed a large overlap between the two modern cultivars and considerable overlap with S. pennellii, indicating that despite the very different development responses, some basic modules are retained. Comparison of enzyme activity, metabolite profiles, and transcript profiles in S. lycopersicum 'Moneymaker' revealed remarkably little connectivity between the developmental changes of transcripts and enzymes and even less between enzymes and metabolites. We discuss the concept that the metabolite profile is an emergent property that is generated by complex network interactions.