Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse




Journal Article

Selection of Shine-Dalgarno sequences in plastids


Drechsel,  O.
Integrative Carbon Biology, Department Stitt, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

Bock,  R.
Organelle Biology and Biotechnology, Department Bock, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

There are no locators available
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available

Drechsel, O., & Bock, R. (2011). Selection of Shine-Dalgarno sequences in plastids. Nucleic Acids Research, 39(4), 1427-1438. doi:10.1093/nar/gkq978.

Cite as:
Like bacterial genes, most plastid (chloroplast) genes are arranged in operons and transcribed as polycistronic mRNAs. Plastid protein biosynthesis occurs on bacterial-type 70S ribosomes and translation initiation of many (but not all) mRNAs is mediated by Shine-Dalgarno (SD) sequences. To study the mechanisms of SD sequence recognition, we have analyzed translation initiation from mRNAs containing multiple SD sequences. Comparing translational efficiencies of identical transgenic mRNAs in Escherichia coli and plastids, we find surprising differences between the two systems. Most importantly, while internal SD sequences are efficiently recognized in E. coli, plastids exhibit a bias toward utilizing predominantly the 5'-most SD sequence. We propose that inefficient recognition of internal SD sequences provides the raison d'etre for most plastid polycistronic transcripts undergoing post-transcriptional cleavage into monocistronic mRNAs.