English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Review Article

Optical Oxygen Micro- and Nanosensors for Plant Applications

MPS-Authors
/persons/resource/persons97059

Ast,  C.
Energy Metabolism, Department Bock, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97457

van Dongen,  J. T.
Energy Metabolism, Department Bock, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Ast-2012-Optical Oxygen Micro.pdf
(Any fulltext), 345KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Ast, C., Schmalzlin, E., Lohmannsroben, H. G., & van Dongen, J. T. (2012). Optical Oxygen Micro- and Nanosensors for Plant Applications. Sensors, 12(6), 7015-7032.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0014-2056-D
Abstract
Pioneered by Clark's microelectrode more than half a century ago, there has been substantial interest in developing new, miniaturized optical methods to detect molecular oxygen inside cells. While extensively used for animal tissue measurements, applications of intracellular optical oxygen biosensors are still scarce in plant science. A critical aspect is the strong autofluorescence of the green plant tissue that interferes with optical signals of commonly used oxygen probes. A recently developed dual-frequency phase modulation technique can overcome this limitation, offering new perspectives for plant research. This review gives an overview on the latest optical sensing techniques and methods based on phosphorescence quenching in diverse tissues and discusses the potential pitfalls for applications in plants. The most promising oxygen sensitive probes are reviewed plus different oxygen sensing structures ranging from micro-optodes to soluble nanoparticles. Moreover, the applicability of using heterologously expressed oxygen binding proteins and fluorescent proteins to determine changes in the cellular oxygen concentration are discussed as potential non-invasive cellular oxygen reporters.