Help Guide Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse




Journal Article

Analysis of metabolic flux using dynamic labeling and metabolic modeling


Fernie,  A. R.
Central Metabolism, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

There are no locators available
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available

Fernie, A. R., & Morgan, J. A. (2013). Analysis of metabolic flux using dynamic labeling and metabolic modeling. Plant, Cell and Environment, 36(9), 1738-1750. doi:10.1111/pce.12083.

Cite as:
Metabolic fluxes and the capacity to modulate them are a crucial component of the ability of the plant cell to react to environmental perturbations. Our ability to quantify them and to attain information concerning the regulatory mechanisms which control them is therefore essential to understand and influence metabolic networks. For all but the simplest of flux measurements labelling methods have proven to be the most informative. Both steady-state and dynamic labelling approaches having been adopted in the study of plant metabolism. Here the conceptual basis of these complementary approaches, as well as their historical application in microbial, mammalian and plant sciences are reviewed and an update on technical developments in label distribution analyses is provided. This is supported by illustrative cases studies involving the kinetic modelling of secondary metabolism. One issue that is particularly complex in the analysis of plant fluxes is the extensive compartmentation of the plant cell. This problem is discussed from both theoretical and experimental perspectives and the current approaches used to address it are assessed. Finally, current limitations and future perspectives of kinetic modelling of plant metabolism are discussed.