de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Serine acts as metabolic signal for the transcriptional control of photorespiration-related genes in Arabidopsis thaliana

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons97154

Florian,  A.
Central Metabolism, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons97147

Fernie,  A.
Central Metabolism, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Timm, S., Florian, A., Wittmiss, M., Jahnke, A., Hagemann, M., Fernie, A., et al. (2013). Serine acts as metabolic signal for the transcriptional control of photorespiration-related genes in Arabidopsis thaliana. Plant Physiology, 162(1), 379-389. doi:10.​1104/​pp.​113.​215970.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0014-1D81-2
Abstract
Photosynthetic carbon assimilation including photorespiration is dynamically regulated during the day/night cycle. This includes transcriptional regulation, such as the light induction of corresponding genes, but little is known about the contribution of photorespiratory metabolites to the regulation of gene expression. Here, we examined diurnal changes in the levels of photorespiratory metabolites, of enzymes of the photorespiratory carbon cycle, and of corresponding transcripts in wild-type plants of Arabidopsis (Arabidopsis thaliana) and in a mutant with altered photorespiratory flux due to the absence of the peroxisomal enzyme Hydroxypyruvate Reductase1 (HPR1). Metabolomics of the wild type showed that the relative amounts of most metabolites involved in photorespiration increased after the onset of light, exhibited maxima at the end of the day, and decreased during the night. In accordance with those findings, both the amounts of messenger RNAs encoding photorespiratory enzymes and the respective protein contents showed a comparable accumulation pattern. Deletion of HPR1 did not significantly alter most of the metabolite patterns relative to wild-type plants; only serine accumulated to a constitutively elevated amount in this mutant. In contrast, the hpr1 mutation resulted in considerable deregulation of the transcription of photorespiration-related genes. This transcriptional deregulation could also be induced by the external application of l-serine but not glycine to the Arabidopsis wild type, suggesting that serine acts as a metabolic signal for the transcriptional regulation of photorespiration, particularly in the glycine-to-serine interconversion reactions.