de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Shikimate and phenylalanine biosynthesis in the green lineage

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons97445

Tohge,  T.
Central Metabolism, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons97470

Watanabe,  M.
Amino Acid and Sulfur Metabolism, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons97197

Hoefgen,  R.
Amino Acid and Sulfur Metabolism, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons97147

Fernie,  A. R.
Central Metabolism, Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Tohge, T., Watanabe, M., Hoefgen, R., & Fernie, A. R. (2013). Shikimate and phenylalanine biosynthesis in the green lineage. Frontiers in Plant Science, 4, 62. doi:10.3389/fpls.2013.00062.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0014-1D7D-E
Abstract
The shikimate pathway provides carbon skeletons for the aromatic amino acids l-tryptophan, l-phenylalanine, and l-tyrosine. It is a high flux bearing pathway and it has been estimated that greater than 30% of all fixed carbon is directed through this pathway. These combined pathways have been subjected to considerable research attention due to the fact that mammals are unable to synthesize these amino acids and the fact that one of the enzymes of the shikimate pathway is a very effective herbicide target. However, in addition to these characteristics these pathways additionally provide important precursors for a wide range of important secondary metabolites including chlorogenic acid, alkaloids, glucosinolates, auxin, tannins, suberin, lignin and lignan, tocopherols, and betalains. Here we review the shikimate pathway of the green lineage and compare and contrast its evolution and ubiquity with that of the more specialized phenylpropanoid metabolism which this essential pathway fuels.