Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

PEVK Domain of Titin: An Entropic Spring with Actin-Binding Properties

MPG-Autoren

Fujita-Becker,  Setsuko
Max Planck Institute of Molecular Physiology, Max Planck Society;

Manstein,  Dietmar J.
Max Planck Institute of Molecular Physiology, Max Planck Society;

Gautel,  Mathias
Max Planck Institute of Molecular Physiology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Linke, W. A., Kulke, M., Li, H., Fujita-Becker, S., Neagoea, C., Manstein, D. J., et al. (2002). PEVK Domain of Titin: An Entropic Spring with Actin-Binding Properties. Journal of Structural Biology, 137(1-2): 1, pp. 194-205. Retrieved from http://dx.doi.org/10.1006/jsbi.2002.4468.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0014-0F19-E
Zusammenfassung
The PEVKdomain of the giant muscle protein titin is a proline-rich sequence with unknown secondary/tertiary structure. Here we compared the force-extension behavior of cloned cardiac PEVK titin measured by single-molecule atomic force spectroscopy with the extensibility of the PEVK domain measured in intact cardiac muscle sarcomeres. The analysis revealed that cardiac PEVK titin acts as an entropic spring with the properties of a random coil exhibiting mechanical conformations of different flexibility. Since in situ, titin is in close proximity to the thin filaments, we also studied whether the PEVK domain of cardiac or skeletal titin may interact with actin filaments. Interaction was indeed found in the in vitro motility assay, in which recombinant PEVK titin constructs slowed down the sliding velocity of actin filaments over myosin. Skeletal PEVK titin affected the actin sliding to a lesser degree than cardiac PEVK titin. The cardiac PEVK effect was partially suppressed by physiological Ca2+ concentrations, whereas the skeletal PEVK effect was independent of [Ca2+]. Cosedimentation assays confirmed the Ca2+-modulated actin-binding propensity of cardiac PEVK titin, but did not detect interaction between actin and skeletal PEVK titin. In myofibrils, the relatively weak actin-PEVK interaction gives rise to a viscous force component opposing filament sliding. Thus, the PEVK domain contributes not only to the extensibility of the sarcomere, but also affects contractile properties.