de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Exploring the effects of active site constraints on HIV-1 reverse transcriptase DNA polymerase fidelity

MPG-Autoren

Cramer,  Janina
Max Planck Institute of Molecular Physiology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons98724

Restle,  Tobias
Abt. III: Physikalische Biochemie, Max Planck Institute of Molecular Physiology, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Cramer, J., Strerath, M., Marx, A., & Restle, T. (2002). Exploring the effects of active site constraints on HIV-1 reverse transcriptase DNA polymerase fidelity. Journal of Biological Chemistry, 277(46): 1, pp. 43593-43598. Retrieved from http://dx.doi.org/10.1074/jbc.M207854200.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-0DC6-7
Zusammenfassung
To examine the concept of polymerase active site tightness as a criteria for DNA polymerase fidelity, we performed pre-steady- state single nucleotide incorporation kinetic analyses with sugar modified thymidine 5'- triphosphate (TTP) analogues and human immunodeficiency virus (HIV-1) reverse transcriptase (RT). The employed TTP analogues (TTP) are modified at the 4'- position of the sugar moiety with alkyl groups, gradually expanding their steric demand. Introduction of a methyl group reduces the maximum rate of nucleotide incorporation by about 200-fold for RTWT and about 400-fold for RTM184V. Interestingly, the affinity of RT for the modified nucleotide is only marginally affected. Increasing the size to an ethyl group leads to further reduction of the rate of incorporation and first effects on binding affinities are observed. Finally, substitution for an isopropyl group results not only in a further reduction of I. incorporation rates but also in a dramatic loss of bin,ding affinity for the nucleotide analogue. By increasing the steric demand the effects on RTM184V in comparison with RTWT become progressively more pronounced. Mis- incorporation of either TTP or (TTP)-T-Me opposite a template G causes additional decline in incorporation rates accompanied by a drastic decrease in binding affinities. This results in relative incorporation efficiencies [(k(pol)/K- d)(incorrect)/(k(pol)/K-d)(TTPcorrect)] of of 4.1 X 10(-5) for TTP and 3.4 X 10(-6) for (TTP)-T-Me in case of RTWT and 1.4 X 10(-5) for TTP and 2.9 X 10(-8) for (TTP)-T-Me in case of RTM184V.