de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The Thermal Voltage Fluctuations in the Planar Core-Coat Conductor of a Neuron-Semiconductor Interface

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons78922

Zeitler,  Ralf
Fromherz, Peter / Membrane and Neurophysics, Max Planck Institute of Biochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons77980

Fromherz,  Peter
Fromherz, Peter / Membrane and Neurophysics, Max Planck Institute of Biochemistry, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zeitler, R., & Fromherz, P. (2013). The Thermal Voltage Fluctuations in the Planar Core-Coat Conductor of a Neuron-Semiconductor Interface. LANGMUIR, 29(20), 6084-6090. doi:10.1021/la4002169.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-FCE0-E
Zusammenfassung
The extracellular electrical interfacing of nerve cells with metals or semiconductors is governed by the resistance of the cell-solid junction. With snail neurons on a CMOS chip, we have probed the thermal voltage fluctuations in the junction at a spatial resolution of 7.4 mu m in a spectral range from 10 Hz to 1 MHz using an array of sensor transistors. The power spectral density (PSD) could be interpreted in terms of a Johnson-Nyquist noise if the distributed nature of the cell-solid junction and the size of the sensors were taken into account. The PSD over the whole spectral range as well as its spatial profile were matched by the thermal noise of a circular core-coat conductor with a homogeneous sheet resistance in the range of 100 M Omega. The quantitative interpretation of the thermal noise in a cell-solid junction provides a basis for applications of this noninvasive method in the characterization of biosensoric and neuroprosthetic devices.