English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The Kapitza-Dirac effect in the relativistic regime

MPS-Authors
/persons/resource/persons37673

Ahrens,  Sven
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30283

Bauke,  Heiko
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30659

Keitel,  Christoph H.
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30828

Müller,  Carsten
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society;
Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

1305.5507v2.pdf
(Preprint), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Ahrens, S., Bauke, H., Keitel, C. H., & Müller, C. (2013). The Kapitza-Dirac effect in the relativistic regime. Physical Review A, 88(1): 012115, pp. 1-14. doi:10.1103/PhysRevA.88.012115.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-F8A5-1
Abstract
A relativistic description of the Kapitza-Dirac effect in the so-called Bragg regime with two and three interacting photons is presented by investigating both numerical and perturbative solutions of the Dirac equation in momentum space. We demonstrate that spin-flips can be observed in the two-photon and the three-photon Kapitza-Dirac effect for certain parameters. During the interaction with the laser field the electron's spin is rotated, and we give explicit expressions for the rotation axis and the rotation angle. The off-resonant Kapitza-Dirac effect, that is, when the Bragg condition is not exactly fulfilled, is described by a generalized Rabi theory. We also analyze the in-field quantum dynamics as obtained from the numerical solution of the Dirac equation.