de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

On higher spin realizations of K(E10)

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons2677

Kleinschmidt,  Axel
Quantum Gravity and Unified Theories, AEI Golm, MPI for Gravitational Physics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons20713

Nicolai,  Hermann
Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1307.0413.pdf
(Preprint), 329KB

JHEP08_2013_041.pdf
(beliebiger Volltext), 498KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kleinschmidt, A., & Nicolai, H. (2013). On higher spin realizations of K(E10). Journal of high energy physics: JHEP, 2013(08): 041. doi:10.1007/JHEP08(2013)041.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-B40E-A
Zusammenfassung
Starting from the known unfaithful spinorial representations of the compact subalgebra K(E10) of the split real hyperbolic Kac-Moody algebra E10 we construct new fermionic `higher spin' representations of this algebra (for `spin-5/2' and `spin-7/2', respectively) in a second quantized framework. Our construction is based on a simplified realization of K(E10) on the Dirac and the vector spinor representations in terms of the associated roots, and on a re-definition of the vector spinor first introduced by Damour and Hillmann. The latter replaces manifestly SO(10) covariant expressions by new expressions that are covariant w.r.t. SO(1,9), the invariance group of the DeWitt metric restricted to the space of scale factors. We present explicit expressions for all K(E10) elements that are associated to real roots of the hyperbolic algebra (of which there are infinitely many), as well as novel explicit realizations of the generators associated to imaginary roots and their multiplicities. We also discuss the resulting realizations of the Weyl group.