Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Reversible events in the transduction process of photoreceptors

MPG-Autoren
/persons/resource/persons247699

Hamdorf,  K
Former Department Comparative Neurobiology, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84015

Kirschfeld,  K
Former Department Comparative Neurobiology, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hamdorf, K., & Kirschfeld, K. (1980). Reversible events in the transduction process of photoreceptors. Nature, 283(5750), 859-860. doi:10.1038/283859a0.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-F10E-D
Zusammenfassung
In photoreceptors, a latency of many milliseconds elapses between the absorption of a light quantum and the occurrence of the late receptor potential, even for strong light stimuli. Surprisingly, this is much longer than the time necessary for conductance changes such as occur in membranes of neurones or muscles, mediated by chemical transmitters. There are several possible explanations for the long photoreceptor latency. (1) It may be due to properties of the visual pigment molecules. For instance, the temporal coincidence of the occurrence of meta-rhodospin II with the receptor signal indicates that the meta I–meta II transition might be the trigger for the electrical response in vertebrate photoreception1. (2) It may be explained by properties of transport processes. Such a time consuming process could be the diffusion of an internal ‘transmitter substance’, which diffuses to a ‘pore’ in the receptor membrane. (3) A third possibility is the time needed to produce and accumulate chemical substances. The light-induced change of the visual pigment molecule might trigger a chemical reaction chain, in which the product of an earlier step triggers the next one. The experiments described here show that a considerable part of the long latency in photoreception is due to processes that are localised at the level of the visual pigment molecule.