de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Cortical templates for the self-organization of orientation-specific d- and l-hypercolumns in monkeys and cats

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84662

Götz,  KG
Neurophysiologie des Insektenverhaltens, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Götz, K. (1988). Cortical templates for the self-organization of orientation-specific d- and l-hypercolumns in monkeys and cats. Biological Cybernetics, 58(4), 213-223. doi:10.1007/BF00364127.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-EF5D-1
Zusammenfassung
Blasdel and Salama's sensory maps of orientation-selective edge detectors in the monkey striate cortex can be reduced to an idealized scheme in which orientation hypercolumns of the d- and l-type occur in alternating sequence (Fig. 1). This scheme resolves the apparent contradiction between linear and circular arrangements of successive edge directions in earlier accounts. The actual configuration of hypercolumns is in register with two possible templates for the self-organization of orientation selectivity: the isometric cytochrome oxidase blobs of the colour system, and the anisometric slabs of the ocular dominance system. The centers of the hypercolumns coincide with the blobs. Simulation of cortical self-organization shows this co-incidence even in the absence of template-specific interactions. However, blobs and slabs are symmetrical to these centers, and therefore no templates for the asymmetrical distribution of preferred orientation in the hypercolumns. The present simulation derives the pre-natal formation of an initial scheme from a hypothetical gradient of nervous activity. Post-natal formation, or maturation, of this scheme is achieved by visual experience. Simulation of corresponding interactions between simultaneously activated neurons illustrates both the gain in orientation selectivity (Figs. 2 and 3), and the optimization of farfield diversity and nearfield conformity (Figs. 4 and 5). The results are compatible with the actual distribution of blob-centered d- and l-hypercolumns, iso-orientation modules and orientation fractures in the monkey. A surprisingly similar distribution of blobless d- and l-hypercolumns is expected in the absence of the colour system. Applied to the apparently blobless cortex of the cat, the scheme explains the modulation of deoxyglucose uptake along the iso-orientation bands in a report of Löwel, Freeman, and Singer.