English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Computational structure of a biological motion-detection system as revealed by local detector analysis in the fly's nervous system

MPS-Authors
/persons/resource/persons241989

Egelhaaf,  M
Former Department Information Processing in Insects, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons38770

Borst,  A
Former Department Information Processing in Insects, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84160

Reichardt,  WE
Former Department Information Processing in Insects, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Egelhaaf, M., Borst, A., & Reichardt, W. (1989). Computational structure of a biological motion-detection system as revealed by local detector analysis in the fly's nervous system. Journal of the Optical Society of America A, 6(7), 1070-1087. doi:10.1364/JOSAA.6.001070.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-EEF5-F
Abstract
The computations performed by individual movement detectors are analyzed by intracellularly recording from an identified direction-selective motion-sensitive interneuron in the fly's brain and by comparing these results with model predictions based on movement detectors of the correlation type. Three main conclusions were drawn with respect to the movement-detection system of the fly: (1) The essential nonlinear interaction between the two movement-detector input channels can be characterized formally by a mathematically almost perfect multiplication process. (2) Even at high contrasts no significant nonlinearities seem to distort the time course of the movement-detector input signals. (3) The movement detectors of the fly are not perfectly antisymmetrical; i.e., they respond with different time courses and amplitudes to motion in their preferred and null directions. As a consequence of this property, the motion detectors can respond to some degree to stationary patterns whose brightness is modulated in time. Moreover, the direction selectivity, i.e., the relative difference of the responses to motion in the preferred and null directions, depends on the contrast and on the spatial-frequency content of the stimulus pattern.