Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The wing beat of Drosophila Melanogaster II: Dynamics

MPG-Autoren
/persons/resource/persons225896

Zanker,  JM
Former Department Neurophysiology of Insect Behavior, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Former Department Information Processing in Insects, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84662

Götz,  KG
Former Department Neurophysiology of Insect Behavior, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zanker, J., & Götz, K. (1990). The wing beat of Drosophila Melanogaster II: Dynamics. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 327(1238), 19-44. doi:10.1098/rstb.1990.0041.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-EEC3-0
Zusammenfassung
The wing beat of tiny insects has attracted considerable interest because conventional aerodynamics predicts a reduction of flight efficiency when aerofoils are comparatively small and slow. Here, two approaches are reported by which we investigated the dynamics of the wing beat of tethered flying Drosophila melanogaster. First, the forces acting on the moving wing were calculated from three-dimensional kinematic data, following the blade-element theory which assumes quasi-steady aerodynamics. Under these conditions, the flight force is directed upwards, relative to the longitudinal body axis, during the second half of the downstroke; it is oriented forwards and downwards during the upstroke. The time average of the force generated according to this theory does not correspond to the direction and magnitude of the actual average force of flight. The expected force is directed forwards, along the body’s longitudinal axis, and is too small to keep the fly airborne. Secondly, an attempt is made to measure the timecourse of flight forces by attaching the fly to along the body’s longitudinal axis, and is too small to keep the fly airborne. Secondly, an attempt is made to measure the timecourse of flight forces by attaching the fly to a string, the displacement of which is monitored by means of laser interferometry. A sharp lift-pulse is observed when the wing is rapidly rotated during the ventral reversal of the wing-beat cycle. A second lift maximum of variable strength seems to be associated with the squeeze-peel events during the dorsal reversal. These results support the notion that flight in small insects might be dominated by unsteady mechanisms.