de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Bayesian Models for Seeing Shapes and Depth

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bülthoff, H. (1991). Bayesian Models for Seeing Shapes and Depth. Comments on Theoretical Biology, 2(4), 283-314.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-EE47-A
Zusammenfassung
We review computational models of shape and depth perception and relate them to visual psychophysics. The Bayesian approach to vision provides a fruitful theoretical framework both for modelling individual modules, such as stereo, shading, texture and occlusion, and for integrating their information. In this formalism we represent depth by one, or more, surfaces with prior probabilities for surface shape, corresponding to natural constraints, in order to avoid the ill-posedness of vision. On theoretical grounds, the less information available to the module (and the less accurate it is) then the more important the priors become. This suggests that visual illusions, and biased perceptions, will arise for scenes for which the priors are not appropriate. We describe psychophysical experiments which are consistent with these ideas. For integration of different modules we advocate strong coupling, so that the modules can interact during computation and the priors can be modified. This framework is rich enough to accommodate straightforwardly both consonant and contradictory cue integration and different psychophysical experiments can be understood within the Bayesian approach.