de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Macaque ganglion cell responses to stimuli that elicit hyperacuity in man: detection of small displacements

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84306

Wehrhahn,  C
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Lee, B., Wehrhahn, C., Westheimer, G., & Kremers, J. (1993). Macaque ganglion cell responses to stimuli that elicit hyperacuity in man: detection of small displacements. Journal of Neuroscience, 13(3), 1001-1009. Retrieved from http://www.jneurosci.org/content/13/3/1001.abstract.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-EDA2-4
Abstract
We measured responses of macaque ganglion cells as a function of contrast in a simple hyperacuity task, detection of displacement of an achromatic edge. Responses of ganglion cells of the magnocellular (MC) pathway were much more vigorous than those of cells of the parvocellular (PC) pathway. From the variability in the number of impulses in the response as compared with the distribution of impulses in maintained activity, it was possible to generate receiver operating characteristics for cells of the two pathways, and to predict individual cells’ capability to detect a displacement with 75 probability. On comparing cell sensitivities to human psychophysical thresholds (75 probability of correct identification of displacement direction) at an equivalent retinal eccentricity (-SO), we found that one or two additional impulses in two MC pathway cells would suffice to support an ideal detector underlying psychophysical performance, at all contrast levels. Many more PC pathway cells would be required, especially at low contrasts. The much higher signal-to-noise ratio in the MC pathway relative to the PC pathway indicates that the MC pathway is likely to support this and other hyperacuity tasks.