de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Bericht

Bayesian decision theory and psychophysics

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons85014

Yuille,  AL
Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Yuille, A., & Bülthoff, H.(1993). Bayesian decision theory and psychophysics (2).


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-ED80-0
Zusammenfassung
We argue that Bayesian decision theory provides a good theoretical framework for visual perception. Such a theory involves a likelihood function specifying how the scene generates the image(s), a prior assumption about the scene, and a decision rule to determine the scene interpretation. This is illustrated by describing Bayesian theories for individual visual cues and showing that perceptual biases found in psychophysical experiments can be interpreted as biases towards prior assumptions made by the visual system. We then describe the implications of this framework for the integration of different cues. We argue that the dependence of cues on prior assumptions means that care must be taken to model these dependencies during integration. This suggests that a number of proposed schemes for cue integration, which only allow weak interaction between cues, are not adequate and instead stronger coupling is often required. These theories require the choice of decision rules and we argue that this choice is important since these rules help capture the task dependent nature of vision. This is illustrated by analysing the generic viewpoint assumption. Finally, we suggest that the visual system uses a set of competing prior assumptions, rather than the single generic priors, or natural constraints, commonly used in computational theories of vision.