de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Symmetric 3D objects are an easy case for 2D object recognition

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84280

Vetter,  T
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Vetter, T. (1994). Symmetric 3D objects are an easy case for 2D object recognition. Spatial Vision, 8(4), 443-453. doi:10.1163/156856894X00107.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-ED1C-1
Zusammenfassung
According to the 1.5 views theorem (Ullman and Basri, 1991; Poggio, 1990) recognition of a specific 3D object (defined in terms of pointwise features) from a novel 2D view can be achieved from at least two 2D model views (or each object, for orthographic projection). In this note we discuss how recognition can be achieved from a single 2D model view by exploiting prior knowledge of an object's symmetry. We prove that for any bilaterally symmetric 3D object one non-accidental 2D model view is sufficient for recognition since it can be used to generate additional "virtual" views. We also prove that for bilaterally symmetric objects the correspondence of four points between two views determines the correspondence of all other points. Symmetries of higher order allow the recovery of Euclidean structure from a single 2D view.