de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Extracting support data for a given task

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schölkopf, B., Burges, C., & Vapnik, V. (1995). Extracting support data for a given task. In First International Conference on Knowledge Discovery & Data Mining (KDD-95) (pp. 252-257). Menlo Park, CA, USA: AAAI Press.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-EC66-3
Zusammenfassung
We report a novel possibility for extracting a small subset of a data base which contains all the information necessary to solve a given classification task: using the Support Vector Algorithm to train three different types of handwritten digit classifiers, we observed that these types of classifiers construct their decision surface from strongly overlapping small (k: 4) subsets of the data base. This finding opens up the possibiiity of compressing data bases significantly by disposing of the data which is not important for the solution of a given task. In addition, we show that the theory allows us to predict the classifier that will have the best generalization ability, based solely on performance on the training set and characteristics of the learning machines. This finding is important for cases where the amount of available data is limited.