Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Neural dynamics in cortex-striatum co-cultures: I. Anatomy and electrophysiology of neuronal cell types

MPG-Autoren
/persons/resource/persons242592

Plenz,  D
Former Department Structure and Function of Natural Nerve-Net , Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Plenz, D., & Aertsen, A. (1996). Neural dynamics in cortex-striatum co-cultures: I. Anatomy and electrophysiology of neuronal cell types. Neuroscience, 70(4), 861-891. doi:10.1016/0306-4522(95)00406-8.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-EBBA-F
Zusammenfassung
An in vitro system was established to analyse corticostriatal processing. Cortical and striatal slices taken at postnatal days 0–2 were co-cultured for three to six weeks. The anatomy of the organotypic co-cultures was determined using immunohistochemistry. In the cortex parvalbumin-positive and calbindin-positive cells, which resembled those seen in vivo, had laminar distributions. In the striatum, strongly stained parvalbumin-positive cells resembling striatal GABAergic interneurons and cholinergic interneurons were scattered throughout the tissue. The soma area of these iterneuron classes was larger than the average striatal soma area, thus enabling visual selections of cells by class before recording. Cortical neurons with projections to the striatum showed similar morphological features to corticostriatal projection neurons in vivo. No projections from the striatum to the cortex were found. Intracellular recordings were obtained from 94 neurons. These were first classified on the basis of electrophysiological characteristics and the morphologies of cells in each class were reconstructed. Two types of striatal secondary neurons with unique electrophysiological dynamics were identified: GABAergic interneurons (n = 17) and large aspiny, probably cholinergic, interneurons (n = 15). The electrophysiological and morphological characteristics of cortical pyramidal cells (n = 27), cortical interneurons (n = 1), as well as striatal principal neurons (n = 34), were identical to those reported for similar ages in vivo.
Organotypic cortex-striatum co-cultures are therefore suitable as an in vitro system in which to analyse corticostriatal processing. The network dynamics, which developed spontaneously in that system, are examined in the companion paper.