de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Cortical oscillations and the origin of express saccades.

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84015

Kirschfeld,  K
Former Department Comparative Neurobiology, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83910

Feiler,  R
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84319

Wolf-Oberhollenzer,  F
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kirschfeld, K., Feiler, R., & Wolf-Oberhollenzer, F. (1996). Cortical oscillations and the origin of express saccades. Proceedings of the Royal Society of London B, 263(1369), 459-468. doi:10.1098/rspb.1996.0069.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-EB86-3
Zusammenfassung
The latencies of visually guided saccadic eye movements can form bimodal distributions. The 'express saccades' associated with the first mode of the distribution are thought to be generated via an anatomical pathway different from that for the second mode, which comprises regular saccades. The following previously published observations are the basis for a new alternative model of these effects: (i) visual stimuli can cause oscillations to appear in the electroencephalogram; (ii) visual stimuli can cause a negative shift in the electroencephalogram that lasts for several hundreds of milliseconds; and (iii) negativity in the electroencephalogram can be associated with reduced thresholds of cortical neurons to stimuli. In the new model both express and regular saccades are generated by the same anatomical structures. The differences in saccadic latency are produced by an oscillatory reduction of a threshold in the saccade-generating pathway that is transiently produced under certain stimulus paradigms. The model has implications regarding the functional significance of spontaneous and stimulus-induced oscillations in the central nervous system.