Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Bericht

Evolution of the Sensorimotor Control in an Autonomous Agent

MPG-Autoren
/persons/resource/persons83985

Huber,  S
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84072

Mallot,  HA
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

MPIK-TR-35.pdf
(Verlagsversion), 526KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Huber, S., Mallot, H., & Bülthoff, H.(1996). Evolution of the Sensorimotor Control in an Autonomous Agent (35). Tübingen, Germany: Max Planck Institute for Biological Cybernetics.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-EB5A-5
Zusammenfassung
Visually guided agents are introduced, that evolve their sensor orientations and sensorimotor coupling in a simulated evolution. The work builds on neurobiological results from various aspects of insect navigation and the architecture of the "Vehicles" of Braitenberg (1984). Flies have specialized visuomotor programs for tasks like
compensating for deviations from the course, tracking, and landing, which involve the analysis of visual motion information. We use genetic algorithms to evolve the obstacle avoidance behavior. The sensor orientations and the transmission weights between sensor input and motor output evolve with the sensors and motors acting in a closed
loop of perception and action. The influence of the crossover and mutation probabilities on the outcome of the simulations, specifically the maximum fitness and the convergence of the population are tested.