de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Bericht

How is bilateral symmetry of human faces used for recognition of novel views?

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84263

Troje,  N
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Troje, N., & Bülthoff, H.(1996). How is bilateral symmetry of human faces used for recognition of novel views? (38).


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-EB44-6
Zusammenfassung
The role of bilateral symmetry in face recognition is investigated in two psychophysics experiments using a same/different paradigm. The results of Experiment 1 confirm the hypothesis that the ability to identify mirror symmetric patterns is used for viewpoint generalization by approximating the view symmetric to the learned view by its mirror reversed image. The results of Experiment 2 show that the match between this virtual view and the test image is performed directly between the images. Performance drops dramatically if the symmetry between the intensity patterns of the learning and the test view is disturbed by an asymmetric illumination, although the symmetry between the spatial arrangement of high-level features is retained. A simple image based model can explain important aspects of the data and we show how this model can be extended towards a general algorithm for image comparison. Experimental results and the model are discussed in terms of their relation to existing approaches to object recognition.