de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Using Spatio-temporal Correlations to Learn Invariant Object Recognition

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84297

Wallis,  GM
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wallis, G. (1996). Using Spatio-temporal Correlations to Learn Invariant Object Recognition. Neural Networks, 9(9), 1513-1519. doi:10.1016/S0893-6080(96)00041-X.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-EAF6-B
Zusammenfassung
A competitive network is described which learns to classify objects on the basis of temporal as well as spatial correlations. This is achieved by using a Hebb-like learning rule which is dependent upon prior as well as current neural activity. The rule is shown to be capable of outperforming a supervised rule on the cross validation test of an invariant character recognition task, given a relatively small training set. It is also shown to outperform the supervised version of Fukushima's Neocognitron (Fukushima, 1980), on a larger training set.