de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Population networks: a large-scale framework for modelling cortical neural networks

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84072

Mallot,  HA
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mallot, H. (1996). Population networks: a large-scale framework for modelling cortical neural networks. Biological Cybernetics, 75(6), 441-452. doi:10.1007/s004220050309.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-EAF4-F
Zusammenfassung
Artificial neural networks are usually built on rather few elements such as activation functions, learning rules, and the network topology. When modelling the more complex properties of realistic networks, however, a number of higher-level structural principles become important. In this paper we present a theoretical framework for modelling cortical networks at a high level of abstraction. Based on the notion of a population of neurons, this framework can accommodate the common features of cortical architecture, such as lamination, multiple areas and topographic maps, input segregation, and local variations of the frequency of different cell types (e.g., cytochrome oxidase blobs). The framework is meant primarily for the simulation of activation dynamics; it can also be used to model the neural environment of single cells in a multiscale approach.