de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Präferierte mentale Modelle beim räumlich-relationalen Schließen: Empirie und kognitive Modellierung

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84019

Knauff,  M
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Rauh, R., Schlieder, C., & Knauff, M. (1997). Präferierte mentale Modelle beim räumlich-relationalen Schließen: Empirie und kognitive Modellierung. Kognitionswissenschaft, 6, 21-34.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-EAA2-7
Zusammenfassung
The theory of mental models is the most prominent approach for explaining the underlying cognitive processes in spatial relational inference. Of the three phases of model construction, model inspection, and model variation, this article focuses mainly on the first one. The phase of model construction in spatial relational inference tasks based on the interval relations of Allen (1983) is investigated in two experiments. The first experiment corroborated the hypothesis of the existence of generally preferred mental models. The second experiment showed evidence for the causal influence of preferred mental models in verification tasks of three-term series problems. Based on these results, the issue concerning the kind of representation of spatial information in mental models is tackled. Cognitive modeling based on insertion operations for beginning and endpoints of intervals by means of a spatial focus, i. e., using only ordinal information, corresponds clearly to the empirical preferences. Finally, we discuss the results with respect to the prediction of inferences in other inference tasks and problems concerning the processes in the phases of model inspection and model variation.