de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Neuroblast ablation in Drosophila P[GAL4] lines reveals origins of olfactory interneurons.

MPS-Authors
There are no MPG-Authors available
Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

RF, S., G, H., N, G., & de JS, B. (1997). Neuroblast ablation in Drosophila P[GAL4] lines reveals origins of olfactory interneurons. Journal of Neurobiology, 32, 443-456.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-EA9E-4
Abstract
Hydroxyurea (HU) treatment of early first instar larvae in Drosophila was previously shown to ablate a single dividing lateral neuroblast (LNb) in the brain. Early larval HU application to p[GAL4] strains that label specific neuron types enabled us to identify the origins of the two major classes of interneurons in the olfactory system. HU treatment resulted in the loss of antennal lobe local interneurons and of a subset of relay interneurons (RI), elements usually projecting to the calyx and the lateral protocerebrum (LPR). Other RI were resistant to HU and still projected to the ERR. However, they formed no collaterals in the calyx region (which was also ablated), suggesting that their survival does not depend on targets in the calyx. Hence, the ablated interneurons were derived from the LNb, whereas the HU-resistant elements originated from neuroblasts which begin to divide later in larval life. Developmental GAL4 expression patterns suggested that differentiated RI are present at the larval state already and may be retained through metamorphosis. (C) 1997 John Wiley Sons, Inc.