de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Optimal, unsupervised learning in invariant object recognition

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84297

Wallis,  GM
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wallis, G. (1997). Optimal, unsupervised learning in invariant object recognition. Neural Computation, 9(4), 883-894. doi:10.1162/neco.1997.9.4.883.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-EA20-9
Zusammenfassung
A means for establishing transformation-invariant representations of objects is proposed and analyzed, in which different views are associated on the basis of the temporal order of the presentation of these views, as well as their spatial similarity. Assuming knowledge of the distribution of presentation times, an optimal linear learning rule is derived. Simulations of a competitive network trained on a character recognition task are then used to highlight the success of this learning rule in relation to simple Hebbian learning and to show that the theory can give accurate quantitative predictions for the optimal parameters for such networks.