de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

A bootstrapping algorithm for learning linear models of object classes

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84280

Vetter,  T
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Vetter, T., Jones, M., & Poggio, T. (1997). A bootstrapping algorithm for learning linear models of object classes. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR 1997) (pp. 40-46). Los Alamitos, CA, USA: IEEE Computer Society.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-EA1C-6
Zusammenfassung
Flexible models of object classes, based on linear combinations of prototypical images, are capable of matching novel images of the same class and have been shown to be a powerful tool to solve several fundamental vision tasks such as recognition, synthesis and correspondence. The key problem in creating a specific flexible model is the computation of pixelwise correspondence between the prototypes, a task done until now in a semiautomatic way. In this paper we describe an algorithm that automatically bootstraps the correspondence between the prototypes. The algorithm -which can be used for 2D images as well as for 3D models-is shown to synthesize successfully a flexible model of frontal face images and a flexible model of handwritten digits.