de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Chromatic properties of neurons in macaque area V2

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84769

Kiper,  DC
Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83926

Gegenfurtner,  KR
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kiper, D., Fenstemaker, S., & Gegenfurtner, K. (1997). Chromatic properties of neurons in macaque area V2. Visual Neuroscience, 14(5), 1061-1072. doi:10.1017/S0952523800011779.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-E9B0-F
Zusammenfassung
We recorded from single cells in area V2 of cynomolgus monkeys using standard acute recording techniques. After measuring each cell's spatial and temporal properties, we performed several tests of its chromatic properties using sine-wave gratings modulated around a mean gray background. Most cells behaved like neurons in area V1 and their responses were adequately described by a model that assumes a linear combination of cone signals. Unlike in V1, we found a subpopulation of cells whose activity was increased or inhibited by stimuli within a narrow range of color combinations. No particular color directions were preferentially represented. V2 cells showing color specificity, including cells showing narrow chromatic tuning, were present in any of the stripe compartments, as defined by cytochrome-oxidase (CO) staining. An addition of chromatic contrast facilitated the responses of most neurons to gratings with various luminance contrasts. Neurons in all three CO compartments gave significant responses to isoluminant gratings. Receptive-field properties of cells were generally similar for luminance and chromatically defined stimuli. We found only a small number of cells with a clearly identifiable double-opponent receptive-field organization.