de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

A bootstrap method for testing hypotheses concerning psychometric functions

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83968

Hill,  NJ
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84314

Wichmann,  FA
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Hill, N., & Wichmann, F. (1998). A bootstrap method for testing hypotheses concerning psychometric functions.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-E981-8
Abstract
Whenever psychometric functions are used to evaluate human performance on some task, it is valuable to examine not only the threshold and slope values estimated from the original data, but also the expected variability in those measures. This allows psychometric functions obtained in two experimental conditions to be compared statistically. We present a method for estimating the variability of thresholds and slopes of psychometric functions. This involves a maximum-likelihood fit to the data using a three-parameter mathematical function, followed by Monte Carlo simulation using the first fit as a generating function for the simulations. The variability of the function's parameters can then be estimated (as shown by Maloney, 1990), as can the variability of the threshold value (Foster Bischof, 1997). We will show how a simple development of this procedure can be used to test the significance of differences between (a) the thresholds, and (b) the slopes of two psychometric functions. Further, our method can be used to assess the assumptions underlying the original fit, by examining how goodness-of-fit differs in simulation from its original value. In this way data sets can be identified as being either too noisy to be generated by a binomial observer, or significantly "too good to be true." All software is written in MATLAB and is therefore compatible across platforms, with the option of accelerating performance using MATLAB's plug-in binaries, or "MEX" files.