de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Continuity Effect and Figural Bias in Spatial Relational Inference

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84019

Knauff,  M
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Knauff, M., Rauh R, Schlieder, R., & Strube, G. (1998). Continuity Effect and Figural Bias in Spatial Relational Inference. In Proceedings of the Twentieth Annual Conference of the Cognitive Science Society (pp. 573-578).


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-E94C-2
Zusammenfassung
Two experiments on spatial relational inference investigated effects known from relational and syllogistic reasoning. (1) Continuity effect: n-term-series problems with continuous (W r1 X, X r2 Y, Y r3 Z) and semi-continuous (X r2 Y, Y r3 Z, W r1 X) premise order are easier than tasks with discontinuous order (Y r3 Z, W r1 X, X r2 Y). (2) Figural bias: the order of terms in the premises (X r Y, Y r Z or Y r X, Z r Y) effects the order of terms in the conclusion (X r Z or Z r X). In the first experiment subjects made more errors and took more time to process the premises when in discontinuous order. In the second experiment subjects showed the general preference for the term order Z r X in the generated conclusions, modulated by a “figural bias”: subjects used X r Z more often if the premise term order was X r Y, Y r Z, whereas Z r X was used most often for the premise term order Y r X, Z r Y. Results are discussed in the framework of mental model theory with special reference to computational models of spatial relational inference