English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONS
  This item is discarded!DetailsSummary

Discarded

Journal Article

Monitoring of cell volume and water exchange time in perfused cells by diffusion-weighted 1H NMR spectroscopy.

MPS-Authors
/persons/resource/persons84137

Pfeuffer,  J
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Pfeuffer, J., Floegel, U., & Leibfritz, D. (1998). Monitoring of cell volume and water exchange time in perfused cells by diffusion-weighted 1H NMR spectroscopy. NMR in Biomedicine, 11, 11-18.


Abstract
Diffusion of intracellular water was measured in perfused cells embedded in basement membrane gel threads. F98 glioma cells, primary astrocytes, and epithelial KB cells were used and were exposed to osmotic stress, immunosuppressiva, the water channel blocker p-chloromercuriobenzenesulfonate (pCMBS), and apoptotic conditions. With diffusion-weighted 1H NMR spectroscopy changes in the intracellular signal could be monitored and quantified with single signal (ss), constant diffusion time (ct), and constant gradient strength (cg) experiments. The temporal resolution of the ss monitoring was 3.5 s with a standard deviation of 0.5 of the signal intensity and 32 s (3) with ct monitoring, respectively. A mean intracellular residence time of water was determined with the cg experiment to about 50 ms. Changes of this exchange time from (51.9 +/- 1.0) to (59.0 +/- 1.1) ms were observed during treatment with pCMBS. The changes in the diffusion attenuated signal could be simulated analytically varying the intracellular volume fraction and exchange time by combination of restricted diffusion (Tanner model) and water exchange (Karger model). This sensitive and noninvasive NMR method on perfused cells allows to determine changes in the intracellular volume and residence time in a simple and accurate manner. Many further applications as anoxia, volume regulation, ischemia and treatment with various pharmaceuticals are conceiveable to follow up their effect on the cell volume and the exchange time of intracellular water.