de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Expression of Aquaporins in Xenopus laevis Oocytes and Glial Cells as Detected by Diffusion-Weighted 1H NMR Spectroscopy and Photometric Swelling Assay.

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84137

Pfeuffer,  J
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Pfeuffer, J., Broer S, Broer A, Lechte M, Floegel, U., & Leibfritz, D. (1998). Expression of Aquaporins in Xenopus laevis Oocytes and Glial Cells as Detected by Diffusion-Weighted 1H NMR Spectroscopy and Photometric Swelling Assay. Biochimica et Biophysica Acta, 1448, 27-36.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-E913-2
Abstract
Expression of aquaporins (AQP) and water permeability were studied in Xenopus laevis oocytes and immobilized glial cells by a pulsed-field gradient spin echo NMR technique and a photometric swelling assay. Oocytes injected with poly(A) RNA from C6-BU-1 cells showed increased swelling behavior under hypoosmotic stress due to expressed water channels as compared to control oocytes. The swelling could be reversibly inhibited by HgCl2. Furthermore, the intracellular relaxation time and the apparent intracellular diffusion coefficient of water in oocytes were determined by diffusion-weighted 1H NMR experiments to be T2=36 ms and Dapp, intra=0.18x10-3 mm2/s. In immobilized C6 and F98 cells the mean exchange time of intracellular water was found to be 51 ms which increased to 75 ms upon chronic treatment (4 days) in hypertonic medium. Additional hybrid depletion experiments with antisense oligonucleotides directed against AQP1 were performed on oocytes and C6 cells. Moreover, different water channel subtypes of glial cells were assessed by a reverse transcriptase polymerase chain reaction assay. With this, the mRNA encoding AQP1 could be detected in primary cultures and glial cell lines, whereas AQP4 mRNA was found in astroglia-rich primary cultures, but not in F98 and C6 cells. Our results show that water permeability in glial cells is mainly mediated by water channels which play an important role in the regulation of water flow in brain under normal and pathological conditions.