de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Where did I take that snapshot? Scene-based homing by image matching

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83919

Franz,  M
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Franz, M., Schölkopf, B., & Bülthoff, H. (1998). Where did I take that snapshot? Scene-based homing by image matching. Biological Cybernetics, 79(3), 191-202. doi:10.1007/s004220050470.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-E7E1-F
Abstract
In homing tasks, the goal is often not marked by visible objects but must be inferred from the spatial relation to the visual cues in the surrounding scene. The exact computation of the goal direction would require knowledge about the distances to visible landmarks, information, which is not directly available to passive vision systems. However, if prior assumptions about typical distance distributions are used, a snapshot taken at the goal suffices to compute the goal direction from the current view. We show that most existing approaches to scene-based homing implicitly assume an isotropic landmark distribution. As an alternative, we propose a homing scheme that uses parameterized displacement fields. These are obtained from an approximation that incorporates prior knowledge about perspective distortions of the visual environment. A mathematical analysis proves that both approximations do not prevent the schemes from approaching the goal with arbitrary accuracy, but lead to different errors in the computed goal direction. Mobile robot experiments are used to test the theoretical predictions and to demonstrate the practical feasibility of the new approach.