de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

Physiological basis of backward masking in scene recognition

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84172

Rieger,  JW
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83926

Gegenfurtner,  KR
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Rieger, J., Gegenfurtner, K., Braun C, Preissl, H., & Bülthoff, H. (1999). Physiological basis of backward masking in scene recognition. Poster presented at 22nd European Conference on Visual Perception, Trieste, Italy.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-E675-D
Abstract
We examined the physiological basis of backward masking by recording evoked magnetic fields with a whole-head MEG-system during a recognition task. On each trial, a digitised image of a natural scene was displayed, immediately followed by a noise mask. Subsequently, the target and a distractor were shown, and subjects had to indicate the target. At 92 ms and 37 ms of presentation time, recognition performance was 97 and 67 correct, respectively. The MEG data revealed that, in the first 80 - 120 ms, activity was concentrated over the occipital cortex. At the 92 ms target duration, the mask had no effect on the initial activity caused by the target. However, at 37 ms of target duration, processing of the mask briefly interfered with the target. A significant difference in MEG activation in correct and false trials occurred at about 160 ms after target onset. The results indicate that, during the first 40 ms of processing of a natural scene, new information arriving in the early visual areas can lead to a profound degradation of recognition performance, correlating with the temporal overlap of target and mask signals in occipital cortex. Later processing stages, beyond 180 ms, seem to be unaffected by the mask.