de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Why the visual recognition system might encode the effects of illumination

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84981

Tarr,  MJ
Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84011

Kersten,  D
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Tarr, M., Kersten, D., & Bülthoff, H. (1999). Why the visual recognition system might encode the effects of illumination. Vision Research, 38(15-16), 2259-2275. doi:10.1016/S0042-6989(98)00041-8.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-E66D-1
Zusammenfassung
A key problem in recognition is that the image of an object depends on the lighting conditions. We investigated whether recognition is sensitive to illumination using 3-D objects that were lit from either the left or right, varying both the shading and the cast shadows. In experiments 1 and 2 participants judged whether two sequentially presented objects were the same regardless of illumination. Experiment 1 used six objects that were easily discriminated and that were rendered with cast shadows. While no cost was found in sensitivity, there was a response time cost over a change in lighting direction. Experiment 2 included six additional objects that were similar to the original six objects making recognition more difficult. The objects were rendered with cast shadows, no shadows, and as a control, white shadows. With normal shadows a change in lighting direction produced costs in both sensitivity and response times. With white shadows there was a much larger cost in sensitivity and a comparable cost in response times. Without cast shadows there was no cost in either measure, but the overall performance was poorer. Experiment 3 used a naming task in which names were assigned to six objects rendered with cast shadows. Participants practised identifying the objects in two viewpoints lit from a single lighting direction. Viewpoint and illumination invariance were then tested over new viewpoints and illuminations. Costs in both sensitivity and response time were found for naming the familiar objects in unfamiliar lighting directions regardless of whether the viewpoint was familiar or unfamiliar. Together these results suggest that illumination effects such as shadow edges: (1) affect visual memory; (2) serve the function of making unambigous the three-dimensional shape; and (3) are modeled with respect to object shape, rather than simply encoded in terms of their effects in the image.