de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Volume completion

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84264

Tse,  PU
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Tse, P. (1999). Volume completion. Cognitive Psychology, 39(1), 37-68. doi:10.1006/cogp.1999.0715.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-E66B-5
Zusammenfassung
The visual system completes image fragments into larger regions when those fragments are taken to be the visible portions of an occluded object. Kellman and Shipley (1991) argued that this “amodal” completion is based on the way that the contours of image fragments “relate.” Contours relate when their imaginary extensions intersect at an obtuse or right angle. However, it is shown here that contour relatability is neither necessary nor sufficient for completion to take place. Demonstrations that go beyond traditional examples of overlapping flat surfaces reveal that “mergeable” volumes, rather than relatable contours, are the critical elements in completion phenomena. A volume is defined as a 3-D enclosure. Typically, this refers to a surface plus the inside that it encloses. Two volumes are mergeable when their unbounded visible surfaces are relatable or the insides enclosed by those surfaces can completely merge. Two surfaces are relatable when their visible portions can be extended into occluded space along the trajectories defined by their respective curvatures so that they merge into a common surface. A volume-based account of amodal completion subsumes surface completion as a special case and explains examples that neither a contour- nor a surface-based account can explain.