de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Poster

Humans can separately perceive distance, velocity and acceleration from vestibular stimulation

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84287

von der Heyde,  M
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84170

Riecke,  BE
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83870

Cunningham,  DW
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

von der Heyde, M., Riecke, B., Cunningham, D., & Bülthoff, H. (2000). Humans can separately perceive distance, velocity and acceleration from vestibular stimulation. Poster presented at 3. Tübinger Wahrnehmungskonferenz (TWK 2000), Tübingen, Germany.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-E54B-6
Zusammenfassung
The vestibular system is known to measure changes in linear and angular position changes in terms of acceleration. Can humans judge these vestibular signals as acceleration and integrate them to reliably derive distance and velocity estimates? Twelve blindfolded naive volunteers participated in a psychophysical experiment using a Stewart-Platform motion simulator. The vestibular stimuli consisted of Gaussian-shaped translatory or rotatory velocity profiles with a duration of less than 4 seconds. The full two-factorial design covered 6 peak accelerations above threshold and 5 distances with 4 repetitions. In three separate blocks, the subjects were asked to verbally judge on a scale from 1 to 100 the distance traveled or the angle turned, maximum velocity and maximum acceleration. Subjects judged the distance, velocity and acceleration quite consistently, but with systematic errors. The distance estimates showed a linear scaling towards the mean response and were independent of accelerations. The correlation of perceived and real velocity was linear and showed no systematic influence of distances or accelerations. High accelerations were drastically underestimated and accelerations close to threshold were overestimated, showing a logarithmic dependency. Therefore, the judged acceleration was close to the velocity judgment. There was no significant difference between translational and angular movements. Despite the fact that the vestibular system measures acceleration only, one can derive peak velocity and traveled distance from it. Interestingly, even though maximum acceleration was perceived non-linearly, velocity and distance judgments were linear.