de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

v-Arc: Ensemble Learning in the Presence of Outliers

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84153

Rätsch,  G
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Rätsch, G., Schölkopf, B., Smola AJ, Müller K-R, Onoda, T., & Mika, S. (2000). v-Arc: Ensemble Learning in the Presence of Outliers. Advances in Neural Information Processing Systems, 561-567.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-E4D0-D
Abstract
AdaBoost and other ensemble methods have successfully been applied to a number of classification tasks, seemingly defying problems of overfitting. AdaBoost performs gradient descent in an error function with respect to the margin, asymptotically concentrating on the patterns which are hardest to learn. For very noisy problems, however, this can be disadvantageous. Indeed, theoretical analysis has shown that the margin distribution, as opposed to just the minimal margin, plays a crucial role in understanding this phenomenon. Loosely speaking, some outliers should be tolerated if this has the benefit of substantially increasing the margin on the remaining points. We propose a new boosting algorithm which allows for the possibility of a pre-specified fraction of points to lie in the margin area or even on the wrong side of the decision boundary.