de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Depth discrimination from shading under diffuse lighting.

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Langer, M., & Bülthoff, H. (2000). Depth discrimination from shading under diffuse lighting. Perception, 29(6), 649-660. doi:10.1068/p3060.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-E4B4-F
Abstract
The human visual system has a remarkable ability to interpret smooth patterns of light on a surface in terms of 3-D surface geometry. Classical studies of shape-from-shading perception have assumed that surface irradiance varies with the angle between the local surface normal and a collimated light source. This model holds, for example, on a sunny day. One common situation in which this model fails to hold, however, is under diffuse lighting such as on a cloudy day. Here we report on the first psychophysical experiments that address shape-from- shading under a uniform diffuse-lighting condition. Our hypothesis was that shape perception can be explained with a perceptual model that "dark means deep". We tested this hypothesis by comparing performance in a depth-discrimination task to performance in a brightness-discrimination task, using identical stimuli. We found a significant correlation between responses in the two tasks, supporting a dark-means-deep model, However, overall performance in the depth-discrimination task was superior to that predicted by a dark-means-deep model. This implies that humans use a more accurate model than dark-means- deep to perceive shape-from-shading under diffuse lighting.