English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Talk

Visual, haptic, and vestibular cue integration

MPS-Authors
/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Bülthoff, H. (2000). Visual, haptic, and vestibular cue integration. Talk presented at 23rd European Conference on Visual Perception (ECVP 2000). Groningen, Netherlands. 2000-08-27 - 2000-08-31.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-E473-1
Abstract
In the past we have studied the integration of different visual cues for depth perception. Recently we have begun to study the interaction between cues from different sensory modalities. In a recent paper (Ernst et al, 2000 Nature Neuroscience 3 69 - 73) we could show that active touch of a surface can change the visual perception of surface slant. Apparently, haptic information can change the weights assigned to different visual cues for surface orientation.
In another multisensory integration project we could show that visual and haptic information about the shape of objects can lead to a common representation with cross modal access [Bülthoff et al, 1999 Investigative Ophthalmology Visual Science 40(4) 398].
Now we are investigating another input into our spatial representation system. Using a 6-DOF Motion Platform we are studying the interaction between the vestibular and the visual system for recognition. I report on first experiments that show that we can derive reliable information about position and velocity of a moving observer from the vestibular system. This information could be used for spatial updating in recognition tasks where the recognition of objects or scenes is facilitated by knowing the position and viewing direction of the observer.