de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Walking Pedestrian Recognition

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83871

Curio,  C
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Curio, C., Edelbrunner J, Kalinke T, Tzomakas, C., & von Seelen, W. (2000). Walking Pedestrian Recognition. IEEE Transactions on Intelligent Transportation Systems, 1(3), 155-163. doi:10.1109/6979.892152.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-E45F-2
Zusammenfassung
In recent years many methods providing the ability to recognize rigid obstacles - sedans and trucks - have been developed. These methods provide the driver with relevant information. They are able to cope reliably with scenarios on motorways. Nevertheless, not much attention has been given to image processing approaches to increase the safety of pedestrians in urban environments. In this paper a method for the detection, tracking, and final recognition of pedestrians crossing the moving oberserver‘s trajectory is suggested. A combination of data- and model-driven approaches is realized. The initial detection process is based on a fusion of texture analysis, model-based grouping of, most likely, the geometric features of pedestrians, and inverse-perspective mapping (binocular vision). Additionally, motion patterns of limb movements are analyzed to determine initial object hypotheses. The tracking of the quasi-rigid part of the body is performed by different algorithms that have been successfully employed for the tracking of sedans, trucks, motorbikes, and pedestrians. The final classification is obtained by a temporal analysis of the walking process